Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes.
نویسندگان
چکیده
We have developed a primary cell culture system derived from embryonic and larval stages of Drosophila. This allows for high-resolution imaging and genetic analyses of endocytic processes. Here, we have investigated endocytic pathways of three types of molecules: an endogenous receptor that binds anionic ligands (ALs), glycosylphosphatidylinositol (GPI)-anchored protein (GPI-AP), and markers of the fluid phase in primary hemocytes. We find that the endogenous AL-binding receptor (ALBR) is internalized into Rab5-positive endosomes, whereas the major portion of the fluid phase is taken up into Rab5-negative endosomes; GPI-APs are endocytosed into both classes of endosomes. ALBR and fluid-phase-containing early endosomes subsequently fuse to yield a population of Rab7-positive late endosomes. In primary culture, the endocytic phenotype of ALBR internalization in cells carrying mutations in Drosophila Dynamin (dDyn) at the shibire locus (shits) parallels the temperature-sensitive behavior of shits animals. At the restrictive temperature in shits cells, receptor-bound ALs remain completely surface accessible, localized to clathrin and alpha-adaptin-positive structures. On lowering the temperature, ALs are rapidly sequestered, suggesting a reversible block at a late step in dDyn-dependent endocytosis. By contrast, GPI-AP and fluid-phase endocytosis are quantitatively unaffected at the restrictive temperature in shits hemocytes, demonstrating a constitutive dDyn and Rab5-independent endocytic pathway in Drosophila.
منابع مشابه
Probable mechanisms underlying interallelic complementation and temperature-sensitivity of mutations at the shibire locus of Drosophila melanogaster.
The shibire locus of Drosophila melanogaster encodes dynamin, a GTPase required for the fission of endocytic vesicles from plasma membrane. Biochemical studies indicate that mammalian dynamin is part of a complex containing multiple dynamin subunits and other polypeptides. To gain insight into sequences of dynamin critical for its function, we have characterized in detail a collection of condit...
متن کاملInduction of mutant dynamin specifically blocks endocytic coated vesicle formation
Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline-inducible promoter. Overexpression of wild-ty...
متن کاملTrafficking through Rab11 Endosomes Is Required for Cellularization during Drosophila Embryogenesis
BACKGROUND Embryonic cleavage leads to the formation of an epithelial layer during development. In Drosophila, the process is specialized and called cellularization. The trafficking pathways that underlie this process and that are responsible for the mobilization of membrane pools, however, remain poorly understood. RESULTS We provide functional evidence for the role of endocytic trafficking ...
متن کاملDistinct Dynamin-dependent and -independent Mechanisms Target Structurally Homologous Dopamine Receptors to Different Endocytic Membranes
D1 and D2 dopamine receptors are structurally homologous G protein-coupled receptors that serve distinct physiological functions both in neurons and nonneural cell types. We have observed that these receptors are selectively endocytosed in HEK293 cells by distinct dynamin-dependent and -independent mechanisms. Although these endocytic mechanisms operate with similarly rapid kinetics, they diffe...
متن کاملEndocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in Drosophila wing discs.
Endocytosis of ligand-receptor complexes regulates signal transduction during development. In particular, clathrin and dynamin-dependent endocytosis has been well studied in the context of patterning of the Drosophila wing disc, wherein apically secreted Wingless (Wg) encounters its receptor, DFrizzled2 (DFz2), resulting in a distinctive dorso-ventral pattern of signaling outputs. Here, we dire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 116 Pt 16 شماره
صفحات -
تاریخ انتشار 2003